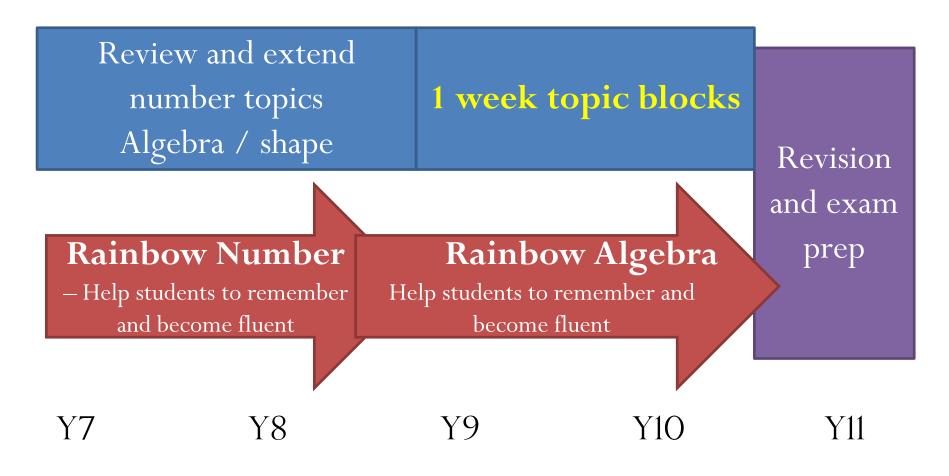
Y9&10 INFORMATION EVENING


MATHEMATICS

- WHAT'S THE PLAN FOR MATHS?
- HOW WELL IS IT GOING?
- MORAL SUPPORT AND KEY MESSAGES
- PRACTICAL SUPPORT

5 YEAR PLAN

- ONE WEEK BLOCKS GIVE STUDENTS TIME TO CONSOLIDATE
- THEY MAKE IT LESS LIKELY STUDENTS FALL Behind

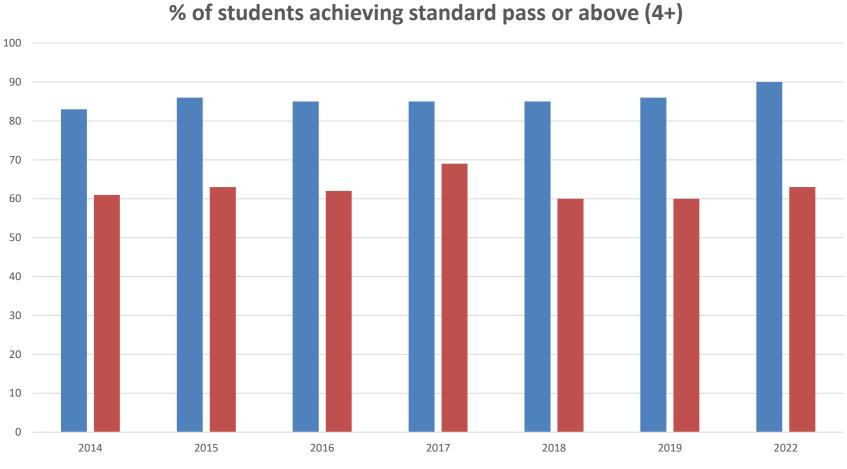
Year 9

Term 1	NUM - primes	RA - simplifying and subs	SSM - Area and Perimeter	NUM - % change 1	ALG - linear equations	NUM - ratio	RA - brackets and factorising	Half Term Test
Term 2	SSM - Angles in polygons	ALG - sequences: term-to-term rules	SSM - Pythagoras	PROB - Probability of events	ALG - linear equations	NUM - negatives	ALG - graphs 1	NUM - fraction arithmetic
Term 3	STATS - averages	SSM - Circles	ALG - Arithmetic Sequences	MID YEAR EXAM	NUM - % change 2			
Term 4	ALG - Simultaneous Equations (part 1a)	SSM - 2D shape properties	STATS - Representing Data	SSM - Similarity	NUM - rounding and bounds	ALG - graphs 2	ALG - linear equations	
Term 5	PROB - tree diagrams	STATS - Distribution	SSM - speed, distance and time	NUM - proportion	SSM - Angles and parallel lines			_
Term 6	RA - laws of indices	END OF YEAR EXAMS	NUM - fraction arithmetic	SSM - Trig	ALG - Simultaneous Equations (part 1b)	ED week / sports day		


Year 10

Term 1	ALG - Quadratic Equations by factorising	NUM - fraction arithmetic	ALG - linear equations	PROB - tree diagrams	SSM - Circle Theorems		
Term 2	RA - changing the subject (part 1)	PROB - experimental	SSM - prisms	ALG - y = mx + c (part 1)	SSM - 3D shape properties		
Term 3	NUM - standard form	ALG - quadratic sequences	STATS - Cumulative Frequency Graphs		MID-YEAR EXAM		
Term 4	ALG - Quadratic Equations by Formula	SSM - compound measure	PROB - Venn Diagrams	SSM - Transformations	ALG - direct and inverse proportion		
Term 5	ALG - forming equations	SSM - Pythagoras and Trig in 3D	STATS - Correlation	RA - changing the subject (part 2)			
Term 6	SSM - Advanced Similarity	NUM - Further Bounds	MOCK EXAMS (tbc)	NUM - Surds (part 1)		ED week / sports day	

- WHAT'S THE PLAN FOR MATHS?
- HOW WELL IS IT GOING?
- MORAL SUPPORT AND KEY MESSAGES
- PRACTICAL SUPPORT



DEPARTMENT RESULTS

■ Notre Dame ■ National

DEPARTMENT RESULTS

% of students achieving top grades (7+)

Notre Dame National

BUT MORE IMPORTANTLY...

Over the last decade, we have been consistently in the top 10% of maths departments in terms of progress.

This year's progress score for maths was **0.52**

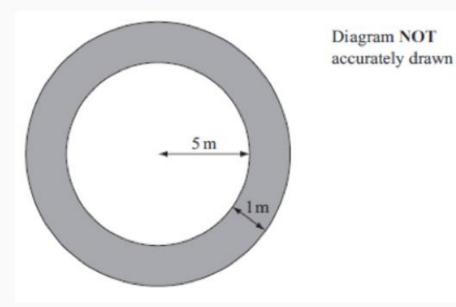
- WHAT'S THE PLAN?
- HOW WELL IS IT GOING?
- KEY MESSAGES AND MORAL SUPPORT
- PRACTICAL SUPPORT

KEY MESSAGE: GCSE MATHS IS DIFFICULT

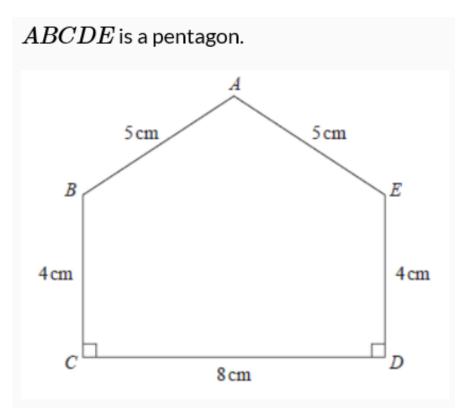
STUDENTS NEED TO KNOW IT'S OK NOT TO "GET IT" STRAIGHT AWAY.

THIS MIGHT BE DIFFERENT FROM WHAT HAPPENED WITH PRIMARY / EARLY SECONDARY MATHS.

THEY MIGHT NEED SUPPORT TO HELP THEM UNDERSTAND THIS



<u>OLD GCSE</u>

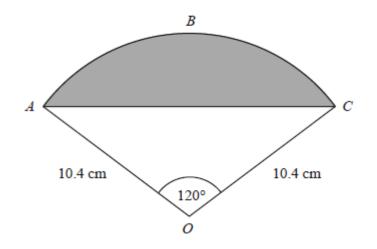

NEW GCSE

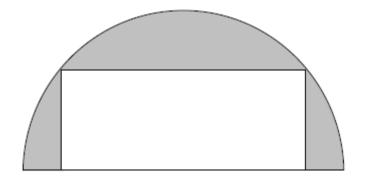
The diagram shows a circular pond with a path around it.

The pond has a radius of 5m. The path has a width of 1m.

Work out the area of the path. Give your answer correct to 3 significant figures.

Work out the area of ABCDE.




<u>OLD GCSE</u>

NEW GCSE

Diagram NOT accurately drawn

(b) Calculate the area of the shaded segment ABC. Give your answer correct to 3 significant figures. The diagram shows a rectangle inside a semicircle. The rectangle has dimensions 16 cm by 6 cm

Work out the shaded area. Give your answer in terms of π .

HABITS FOR LEARNING MATHS

- MATHS IS LEARNED THROUGH EXAMPLES. Students need to be thinking about how they would deal with every example, not just when they are asked
- IMITATE THE WORKING SHOWN BY THE TEACHER. SOME STUDENTS CAN DO EASY QUESTIONS WITHOUT WORKING, AND THEN GET STUCK ON MORE CHALLENGING QUESTIONS
- PRACTICE WRITING CLEAR SOLUTIONS. AS THE MATHS GETS HARDER, THOSE WHO RELY ON MENTAL METHODS START TO STRUGGLE.

HABITS FOR LEARNING MATHS

- RESILIENCE IS SOMETHING WE HAVE TO LEARN, AND BUILD UP SLOWLY.
- WE MOSTLY MODEL THE THINKING THAT STUDENTS NEED TO USE.
- BUT SOMETIMES, WE NEED TO LET THEM THINK FOR A MINUTE OR TWO BEFORE GIVING GUIDANCE

Jon has 78p

Nat has £3.52

Nat gives Jon some money so that they both have the same amount.

How much does Nat give Jon?

- WHAT'S THE PLAN?
- HOW WELL IS IT GOING?
- MORAL SUPPORT AND KEY MESSAGES
- PRACTICAL SUPPORT

- STUDENTS NEED TO PRACTICE AS MUCH AS POSSIBLE
- IN SCHOOL, WE WILL REGULARLY CREATE CALM SPACES TO PRACTICE
- ANY STRUCTURE AT HOME THAT HELPS GIVE TIME FOR PRACTICE IS REALLY HELPFUL.
- PRACTICE MAKES YOU FASTER AND MORE CONFIDENT BUT ALSO YOU NEW KNOWLEDGE CHANGES HOW YOU THINK
- HERE IS AN EXAMPLE

THE VALUE OF PRACTICE

07382863494

01141066365

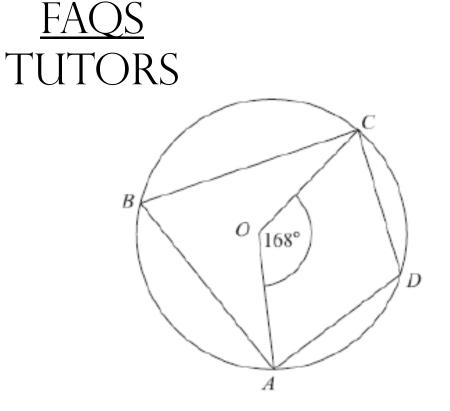
01141066365

HAVING EXTRA KNOWLEDGE AND SKILL CAN MAKE NEW TASKS MUCH EASIER

WHERE TO PRACTICE

STUDENTS CAN PRACTICE THEIR QUIZZES

 What's the probability of getting a so two dice? Work out 3 x 50 - 3 x 5² 	ore of 11 when rolling #17				
	i.				
	Divel				
1) 3 because 3x3 = 9	4) 12345	6			
and 9×3=27	1 53426	2			
N	2 3 4 5 6 7 Diaz 3 4 5 6 7 8 4 5 6 7 8 9 5 6 7 8 9 10	2			
2) <u>11</u>	0102 3 45 67 8	0			
100	456789	10			
	5 67890	0			
3) F	6 789100	13			
4 L L L	$P(11) = \frac{2}{36}$				
		5			
6480 + 2 = 6240 (each box) 5) 3×50-3×5)			
	= 3 × 50 - 3 × 2	5			
Fred gets 3×240					
	= 150 - 75				
240					
6/2/03	= 75				


WHERE TO PRACTICE

- HEGARTY MATHS
- DRFROSTMATHS.COM

- KHAN ACADEMY
- MATHS GENIE FOR SPECIFIC TOPICS
- CORBETT MATHS

A, B, C and D are points on the circumference of a circle, centre O.

Angle AOC = 168°

Work out the size of angle *ADC*. You must give reasons for your working.