

Physics Curriculum Plan

Intent: Studying physics will help students to understand how the universe is structured. They will solve problems using their imagination and by developing their modelling skills. There are many areas in which this knowledge is vital to a responsible citizen, such as understanding the need for cleaner power generation through technologies like nuclear fusion. With Triple award Physics, students will be introduced to more advanced mathematical and logical modelling and explore further topics such as moments, electro-magnetic induction and Astrophysics.

Year	What will students	Rationale	How will students be	Real world (disciplinary knowledge / careers /
	learn?		assessed?	local area)
7	Phase 1 – Space, Waves and Sound Phase 2 – Energy and Energy resources	In Y7, we aim to teach the basic skills of scientific enquiry, lateral thinking, logical/mathematic modelling and practical skills whilst providing an engaging context where students can use their imagination and engage fully. To this end, we chose space for its highly engaging context as the introductory physics topic followed by Waves and Sound which provides opportunities for modelling and practical activities. After this, we have chosen energy as this is a fundamental part of all physics learning in the future. Once this key concept is covered, we continue along to the current social context of Energy resources. Our reasoning behind this is that it shows how the student's learning can be used in a wider (and arguably important) context in	Students will sit a summative test at the end of each phase. This will also be used in formative assessment and, where appropriate, to regroup the student into a group better suited to their needs. These assessments are provided by the "Activate" education group, which also write the textbooks we use in lessons.	Y7 is an important year in physics where we build important understanding of application of key skills and foster a love of physics which will hopefully last for the rest of the student's school career. Specific skills include; Plotting and interpretation of simple bar charts (planet vs temperature, hearing ranges of different animals) Plotting of bar charts from experimental data (how much a specific burned food heats up a water source) Use of plotted bar charts to make conclusions (for example, which insulator is most effective in keeping water warm) Use of simple data to make conclusions (e.g., from a list of planet temperatures, which is the hottest planet?)

			Interpretation of data to make conclusions (e.g., time of day at a certain point of the year to decide if a person is north or south of the
			equator)
			Use of units to represent magnitudes (for example energy is measured in joules)
			Use of simple prefix conversions (1KJ = 1000J).
			Ose of alternative units of energy (kwin)
			All of this has links to real-world careers such as
			analysis. There are also real-world links to the
			energy crisis and environmental concerns with
			electricity generation techniques
8	Phase 1 – Forces,	In Y8, we continue with the development of	Disciplinary knowledge in Y8 builds on the skills
	Motion and Pressure	logical/mathematical modelling in	outlined above, but develops this further by
		preparation for the KS4 course. For this	adding;
	Phase 2 – Light,	reason, we have chosen to start with Force,	Plotting of line graphs based on experimental
	Electricity and	Motion and Pressure. This gives us an	data
	Magnetism	opportunity to explore mathematical modelling and how to most effectively	Ability to choose axis scales based on given data
		assign, use and solve basic physics	Use of lines of best fit to show the relation of
		formulae. This is also a more "physical" context and therefore easier for students to	data (NOT dot to dot)
		picture and model logically, allowing us to build these skills	Interpretation of data from line graphs to make conclusions (NOT calculation of gradients yet)

After this, we move to more advanced	Interpretation and analysis of line graphs
modelling with Light, Electricity and	(specifically graphs of motion) (this includes use
Magnetism. As these contexts are entirely	of "dot to dot – the only time we use this inn
dependent on logical modelling (they can't	physics), determination of gradients and
be "seen" and can be challenging to	calculation of areas under the line of data
imagine), this gives us an opportunity to	Plotting and interpretation of graphs from given
describe how observations,	data
experimentation and repeated changes	
shape how we model these concepts and	Ability to choose axis scales based on given data
how models are continually adapted and	
revised based on improved results and	Identification and use of correct graph types (bar
understanding.	or line) based on variable type of the
	independent variable
	Making conclusions from given data and graphs
	Use of units to represent magnitudes (for
	example, force is measured in newtons)
	Description of relationships between variables
	(force is directly proportional to extension)
	Calculation of changes in a single variable
	(extension = change in length)
	Substitution and calculation from simple
	equations (w=mg, s=d/t, P=F/A, calculation of
	moments) – INTRODUCTION OF GUESS METHOD

				Use of negative numbers in the context of force directions to calculate resultant forces and moment direction Introduction to use of standard form for larger and smaller numbers Calculation of mean averages of data Identification of patterns from given data to determine relationships between variables Definition and identification of independent,
				dependent and control variables as well as "fair tests"
				All of this has links to real-world careers such as Mechanical/electrical engineering, especially paving the way into an understanding of hydraulic systems. There are also real-world links to the national grid which further links into the world energy crisis and how to transfer electricity efficiently
9	Previous SOW (students who started KS4 before 2022) Phase 1 – Energy and	In Y9, students now have a stronger grasp on modelling and scientific method then they had when they started learning science. For this reason, we revisit the most fundamental key concept of physics –	Previous SOW - Students will sit a summative test at the end of each phase. This will also be used in formative assessment and, where	Year 9 is an especially important year in physics as it is here we secure the skills learned in KS3 and further develop the skill to a point where the rest of the course can be accessed effectively. Specific skills include;
	Energy Resources	further develop the logical and	appropriate, to regroup the	data

Phase 2 – Forces in	mathematical modelling skills students	student into a group better	
Action	have developed over KS3 to better	suited to their needs.	Use of experimental data to plot appropriate
	understand and explore this key concept.		graphs (bar or line) based on independent
	As before, we then demonstrate how	These exams are based upon	variable type
	scientific understanding can be applied to	past paper questions provided	
	real-world social issues by discussing Energy	by AQA, the examining body	Ability to choose axis scales based on given data
	resources and their effect on the	and the provider of our	Lines of best fit plotted on-line graphs
New SOW (students	environment.	textbooks	Lines of best in plotted on line graphs
starting KS4 on or after			
2022)	Similar to the beginning of Y8, we feel	New SOW – There is a 40-	conclusions and comparisons made from
	strongly that a firm grasp of basic formulaic	mark end of topic assessment	graphical data
Topic 1 – Energy	manipulation and mathematic modeling is	designed to assess key	
	essential for the rest of the course. For this	knowledge and skills in an	interpretation of sketch graphs to identify
Topic 3 – Particles	reason, the next topic we teach is Forces in	exam context. Papers are	relationships of data without values
	Action. As this topic contains the majority	made using past exam papers	
Topic 4 – Atomics	of the mathematic work in the course, this	and are used to influence	Use of sketch graphs/plotted line graphs to
	gives us an excellent opportunity to build	future development of said	describe behavior of particle models (temp vs
Separate Science only	these basic key skills to a high level, in turn	skills and assess any gaps in	energy for state changes)
 Topic 8 (Space) 	making the rest of the course easier to	key knowledge	
	access. This is also, again, one of the more		Identification of exponential decay for a large
	"physical" contexts which is easier to		population of random events
	imagine and understand, allowing us		
	opportunity to develop logical modelling		Plotting of significant datum on line graphs
	and understanding.		Ability to choose axis scales based on given data
			Ability to choose axis scales based on given data
			line of summed lines of boot fit to some set that
			Use of curved lines of best fit to represent data
			Determination of 'half-life" from plotted line
			graph data

		Identification of correct formulae based on given variables and requested answers Substitution and use of three-variable simple formulae to calculate variables (GUESS structure to be used)
		Substitution and use of more complex formulae (involving squares/square roots and 4 variable expressions) to solve problems (GUESS structure to be used)
		Rearrangement of substituted variables in a formula
		Calculation and appreciation of ratios/percentages (efficiency)
		Use of units to represent magnitudes (for example energy is measured in joules)
		Use of simple prefix conversions (1KJ = 1000J)
		Use of alternative units of energy (kWH)
		Identification and use of relationships between variables to solve problems

	-	
		Use of formulae to describe relationships
		between data
		Identification and use of patterns in data to
		make predictions/conclusions
		Calculation of volume of a simple object from
		calculation of volume of a simple object from
		recorded and given values
		Identification of correct formulae based on given
		variables and requested answers
		Substitution and use of three-variable simple
		formulae to calculate variables (GUESS structure
		to be used)
		Conversion between simple units (g to kg, m to
		cm)
		Substitution and use of more complex formulae
		(involving squares/square roots and 4 variable
		(involving squares) square roots and 4 variable
		to be used)
		to be used)
		Combinations of multiple formulae to solve one
		problem (specifically, use of two separate

		formulae to produce two values, which together are used to solve problems)
		HT only – use of an expression with no given value of constant to describe relationships
		Additional skills introduced at this point in the updated SOW started 2023 include;
		Appreciation of "random" events and how a large number of random events can follow a pattern
		Use of more specific units to represent values (e.g., "becquerels" for activity, "sieverts" for exposure)
		Ability to appreciate the use of standard form for extremely small values
		Ability to use "relative" measurements for mass and charge of a particle
		Appreciation for charge and mass conservation in atomic formulae
		Writing and balancing of atomic/nuclear formulae

				Expressions of net decline in emission after a set value of half-lives
				Use of half-life of a substance to identify number of half-lives elapsed and, therefore, the age of a material
				Identification and correction of data based on systematic error (background radiation)
				Use of given relationships to describe interactions between variables (orbits)
				Energy is a fundamental topic in physics and will underpin a student's understanding of
				physics as a whole. Specific real-world links
				include an understanding of the national grid
				and energy generation (building on what was discussed in KS2) and further applications in
				engineering and any career that includes the
				application of logic and applied mathematics.
				The new scheme of work allows students to
				gain an understanding of radiation and it's safe
				handling, which has real-world applications to
				the growing use of nuclear power and the
				growing use of radioactive materials in society.
10	Previous SOW (KS4	In Y10, we then move to more challenging	Previous SOW - Students will	In Y10, students are trained to develop not only
	started before 2022)	modelling but with the advanced logic and	sit a summative test at the	key knowledge and skills, but also the ability to

	mathematical skill built in Y9. Electric	end of each phase. This will	apply and visualize more complex and
Phase 1 – Electricity	circuits can still be learnt in a physical	also be used in formative	challenging models to explain observations.
and Electric Circuits	approach using circuits and other	assessment and, where	These skills include;
	equipment but require a strong model to	appropriate, to regroup the	
Phase 2 - Waves and	understand what is happening as the direct	student into a group better	Plotting of line graphs from given and recorded
Magnetic Fields	mechanism cannot be seen. This also	suited to their needs.	data
	rounds up the majority of mathematical		
	formulae in the course allowing us to	These exams are based upon	Ability to choose axis scales based on given data
	further develop and polish mathematical	past paper questions provided	
	modelling and problem-solving skills.	by AQA, the examining body	Analysis of graphs including gradients and area
		and the provider of our	under calculations
	Waves and magnetic fields allow us to take	textbooks	
	logical modelling to a higher degree as well		
	as explore more abstract context. This also		Appreciation of how changes in axis values can
	allows us to build a foundation of		affect variables given by gradients
	understanding and knowledge for the start	New SOW – There is a 40-	
	of the Y11 course.	mark end of topic assessment	Linking of graphical analysis to formulae,
		designed to assess key	relationships and conclusions
	In the updated SOW, we use the electric	knowledge and skills in an	
	fields and electromagnetism topics to	exam context. Papers are	Description of observations from graphical data
	further develop modelling skills and an	made using past exam papers	(motion from a v vs t graph)
New SOW (KS4 started	understanding of the application of	and are used to influence	Ability to produce sketch graphs based on
in or after 2022)	electricity and electric fields. This will also	future development of said	expected relationships
	develop modelling techniques and the	skills and assess any gaps in	
Topic 5 – Forces	ability to work with more advanced	key knowledge	Ability to identify components based on sketch
-	scientific models		graphs/line of best fit on plotted data
Topic 2 (part 1) –		At the end of the year,	0 p
Electricity in circuits		students will also sit an	
		adapted examination paper	

 Topic 2 (part 2) –	(containing questions on the	Ability to plot line graphs with both positive and
Electric fields and their	Y9 and Y10 topics stated	negative axis with lines of best fit that can be
effects	previously) lasting 1 hour 15	either curves, straight or a combination of both
Tania 7	minutes (Double award) or 1	
TOPIC 7 -	nour 45 minutes (Triple	Ability to form conclusions based on graphical
Electromagnetism	awaru)	data
		Ability to explain trends in data using modelling
		Ability to read and interoperate graphs with
		variable axis scales (for example, an oscilloscope)
		Ability to identify values on said graphs
		Ability to attribute pagative values to coolers
		Ability to attribute negative values to scalars
		Ability to use vector diagrams to determine
		resultant vectors
		Calculations of mean averages to reduce random
		error
		Substitution of similar terms into multiple
		formula based on context (e.g., Ek = Eg for a
		falling object, W = E for an object braking)

		Memorization and correct selection of formulae to solve specific problems
		Use of multiple formulae for more complex problems (specifically using a formulae to work out a value that is not specified, which is then substituted into a second expression to calculate a specified value).
		Use of energy and momentum conservation to calculate changes in a system Use of relationships to predict changes in a given variable (for example, resistance vs length of a wire)
		Use of multiple simple formulae to calculate given values (specifically the use of one expression to determine an unspecified value which is then used in a second expression to determine a specified value)
		Memorization and use of a significant number of simple formulae, in addition to the ability to pick correct formulae to solve a given problem Memorization and use of a range of units

		Ability to see patterns in recorded data and use said relationships to produce general relationships and predict readings
		Ability to use formulae to describe relationships between variables and use said relationships to describe uses of devices, for example transformers
		Ability to use more complex formulae to solve problems
		Ability to use and exploit ratios to determine changes in a given value
		Appreciation of vector direction in calculations and in descriptions
		Appreciation (but NOT calculation) of three- dimensional vectors
		Ability to link rates of change to magnitude of a single variable
		Use of multiple simple formulae to calculate given values (specifically the use of one expression to determine an unspecified value

				which is then used in a second expression to
				determine a specified value)
				Memorization and use of a significant number of
				simple formulae, in addition to the ability to pick
				correct formulae to solve a given problem
				Memorization and use of a range of units
				Electricity and electromagnetism has a range of
				real-world careers to link to, with notable
				examples including electrical engineering and
				domestic electricity. The electromagnetism
				topic introduce in the new SOW also allows
				students to discuss and design electric motors
				which is not only an application of modelling to
				produce a desired device but it also has real
				world links to the rise of electric cars and the
				technology bening them to improve range and
11		In V11, we explore the use of higher-level	Previous SOW - Students will	V11 is a year where we develop application of
11	(Students started KSA	modelling in advanced contexts to solve	sit a summative test at the	the skills learned throughout KSA and coach
	hefore 2022)	more challenging logical problems	end of each phase. This will	students in revision and exam techniques to aet
			also be used in formative	the most accurate reflection of student ability in
	Electromagnetic	Electromagnetic interaction is amongst the	assessment and, where	the GCSEs in addition to the best possible start
	interaction, Atomic	most challenging context to imagine and	appropriate, to regroup the	for students wanting to do physics at A-level.
	Structure/Radioactivity	logically model as it requires an	student into a group better	Specific skills include;
	and Particle model of	understanding of interaction between two	suited to their needs.	
	matter	fields that cannot be directly seen. This		Ability to produce sketch graphs based on
		allows us to really stretch students in the		expected relationships

(Triple award only) -	skills built up to this point as well as stretch	These exams are based upon	
Further Mechanics,	their abilities to apply their learning to	past paper questions provided	Ability to identify components based on sketch
Advanced Wave	unfamiliar contexts.	by AQA, the examining body	graphs/line of best fit on plotted data
behavior and		and the provider of our	
Astrophysics	After that, we move on to Atomic	textbooks	Ability to plot line graphs with both positive and
	Structure/Radioactivity and Particle model		negative axis with lines of best fit that can be
	of matter. These provide a welcome	New SOW – There is a 40-	either curves, straight or a combination of both
	practice to the skills built across the course	mark end of topic assessment	
New SOW (Students	as well as a snapshot of how other sciences,	designed to assess key	Ability to form conclusions based on graphical
starting KS4 on or after	such as Chemistry and Biology, can be	knowledge and skills in an	data
2022)	informed and explored further with Physics.	exam context. Papers are	
	They also share a context with makes them	made using past exam papers	Ability to explain trends in data using modelling
Topic 6 - Waves	easier to engage with and demonstrates	and are used to influence	
	the wider combination of ideas in physics.	future development of said	Ability to read and interoperate graphs with
		skills and assess any gaps in	variable axis scales (for example, an oscilloscope)
	At this point, Triple award students will	key knowledge	
	continue to learn about more advanced		Ability to use more complex formulae to solve
	concepts and application of key ideas in		problems
	mechanics (momentum, levers and	At points of the year, students	
	moments), Waves (refraction in lenses) and	will sit practice examinations	Ability to use and exploit ratios to determine
	Astrophysics (which uses multiple previous	based on adapted	changes in a given value
	learning points such as nuclear processes,	examination papers	
	electromagnetic radiation and forces in	(containing topics learnt up to	Appreciation of vector direction in calculations
	order to access, providing an excellent	the point of the exam) lasting	and in descriptions
	opportunity for recap and further practice	1 hour and 45 minutes. There	
	in application	may be multiple practice	Ability to link rates of change to magnitude of a
		exams, however students will	single variable
		be made aware with plenty of	
		advanced notice if the	

			 teacher/school decides this is required. At the end of the academic year, students will sit 2 physics papers, each lasting 1 hour 15 minute (Double award) or 1 hour 45 minutes (Triple award). The papers will cover the following topics; Paper 1 – Energy, Electricity, Particle Model of Matter and Atomic Structure/Radioactivity Paper 2 – Forces, Waves, Magnetism and Astrophysics 	Use of multiple simple formulae to calculate given values (specifically the use of one expression to determine an unspecified value which is then used in a second expression to determine a specified value) Memorization and use of a significant number of simple formulae, in addition to the ability to pick correct formulae to solve a given problem Memorization and use of a range of units The waves topic has a specific real-world application in the uses of waves, which links well into careers in IT and communication technology. The importance of communication technology in the form of the internet and mobile/satellite communications is a real-world application of this knowledge in addition to the dangers and understanding of ionizing radiation, such as tanning beds and medical imaging.
12	Topic 1 – Working as a	The order of topics in KS5 follows the		A-level physics is focused on the idea of mastery
	<u>Physicist</u>	order given in the Pearson Edexcel	Students will sit Three papers	of physics and the ability to freely apply and
		Specification – our examining body. We	at the end of the Y13	combine skills and ideas to solve both real and
	<u>Topic 2 – Mechanics</u>	have chosen to follow this structure as the	academic year;	theoretical problems. Specific skills learned
		development of mathematic and logical		include;
	Topic 3 – Electric	thinking skills given by this order allows us		
	Circuits	to better support our students, especially		

	those who are not doing mathematics	 Paper 1, consisting of 	Ability to read and interoperate graphs with
<u>Topic 4 – Materials</u>	(something we recommend but do not	topics 1,2,3,6,7 and 8	variable axis scales (for example, an oscilloscope)
	insist upon. Our professional staff do make	(1 hour 45 minutes)	
<u>Topic 5 – Waves and</u>	some minor changes on the topic order to	 Paper 2, consisting of 	Ability to identify values on said graphs
the Particle	better fit practice examinations, revision	topics 1,4,5,9,10,11,12	
Nature of Light	or if certain topics work better in	and 13 (1 hour 45	Plotting of line graphs from given and recorded
	combination (for example, some teachers	minutes)	data
	prefer to teach Nuclear Radiation	• Paper 3, which	
	immediately before Nuclear and Particle	contains content from	Ability to choose axis scales based on given data
	Physics as this has a shared context),	all topics but will be	
	however any such changes are	entirely in an	Analysis of graphs including gradients and area
	communicated to students ahead of time	experimental physics	under calculations
	and are made to better serve the teaching	context. (2 hours 30	
	of the content.	minutes)	Appreciation of how changes in axis values can
	Throughout the topics, Students are also		affect variables given by gradients
	learning practical skills as outlined in Topic	The examinations are	
	1 – this is done over the period of teaching	summative and test the	Linking of graphical analysis to formulae,
	as it gives us plenty of opportunity to use	entirety of the course. There	relationships and conclusions
	specialist tools and equipment in suitable	unfortunately is no option to	
	contexts.	"bank" a grade at As.	Description of observations from graphical data
			(motion from a v vs t graph)
		In terms of in-school regular	
		assessment, students sit a	Ability to produce sketch graphs based on
		short formative assessment at	expected relationships
		the end of each topic. In Y12,	
		Students will also complete a	Ability to identify components based on sketch
		practice As Paper 1 (topics 1,2	graphs/line of best fit on plotted data

	and 3 only) and Paper 2	Ability to plot line graphs with both positive and
	(Topics 1,4 and 5 only) as a	negative axis with lines of best fit that can be
	summative assessment as well	either curves, straight or a combination of both
	as for formative feedback.	
	Where possible, Students will	Ability to form conclusions based on graphical
	also sit a practice paper	data
	focused on experimental	
	context-based questions and	Ability to explain trends in data using modelling
	more advanced contexts.	
		Ability to read and interoperate graphs with
	In Y13, in addition to the end	variable axis scales (for example, an oscilloscope)
	of topic tests describes	
	previously, students also sit a	Ability to identify values on said graphs
	practice Paper 1,2 and 3 over	
	the year, again as both a	Ability to identify values on said graphs
	formative and summative	Ability to map a n expression to Y=MX+C in order
	assessment.	to plan an experiment to determine either M or
		С
	In addition to this, ALL student	
	have to complete a core	Ability to use more complex formulae to solve
	practical endorsement which	problems
	assesses practical and analysis	
	skills. This endorsement is	Ability to use and exploit ratios to determine
	based on a holistic review of	changes in a given value
	12 core practical write-ups	
	done over Y12 and 13 (there	Ability to use and calculate using numbers in
	are 15 planned core practicals	standard form
	in the current SOW with	

	additional (backup" opportunities available as required).	Ability to memorise, recognize and convert between prefix values from "nano" to "giga" in a calculation
		Calculation of two-dimensional vectors using both vector diagrams and Pythagoras/trigonometry
		Ability to resolve vectors into horizontal/vertical components
		Ability to calculate across two dimensions (SUVAT projectile motion)
		Ability to see patterns in recorded data and use said relationships to produce general relationships and predict readings
		Ability to use conservation laws and formulae to logically explain patterns in data
		Ability to use formulae to describe relationships between variables and use said relationships to describe uses of devices, for example transformers
		Calculation of random and systematic errors from data

			Calculation of uncertainties from data
			Ability to use more complex scientific equipment, such as micrometers, Vernier calipers and oscilloscopes
			Students sitting an A-level in physics are more likely to enter into a career of engineering, physics research and economics, and our SOW reflects the core skills that are of use in these fields. There are many real-world links to be made including a greater understanding of engineering, electrical engineering and avionics in addition to quantum physics and practical physics research such as quantum computing
13	<u>Topic 1 – Working as a</u> <u>Physicist</u> <u>Topic 6 – Further</u>		The goal in Y13 is to produce true mastery of every skill learnt so far, with students gaining a true understanding of the observable world around them. We also aim to prepare students
	<u>Mechanics</u> <u>Topic 7 – Electric and</u> <u>Magnetic Fields</u>		for their entry into degree level physics Skills to achieve this include; Ability to read and interoperate graphs with variable axis scales (for example, an oscilloscope)
	<u>Topic 8 – Nuclear and</u> <u>Particle Physics</u>		Ability to identify values on said graphs

<u> Topic 9 –</u>		Plotting of line graphs from given and recorded
Thermodynamics		data
<u> Topic 10 –</u>		Ability to choose axis scales based on given data
Astrophysics		
		Analysis of graphs including gradients and area
<u>Topic 11 – Nuclear</u>		under calculations
Radiation		
		Appreciation of how changes in axis values can
Topic 12 –		affect variables given by gradients
Gravitational Fields		
		Linking of graphical analysis to formulae,
Topic 13 - Oscillations		relationships and conclusions
		Description of observations from graphical data
		(motion from a v vs t graph)
		Ability to produce sketch graphs based on
		expected relationships
		Ability to identify components based on sketch
		graphs/line of best fit on plotted data
		Ability to plot line graphs with both positive and
		negative axis with lines of best fit that can be
		either curves, straight or a combination of both
		Ability to form conclusions based on graphical
		data

		Ability to explain trends in data using modelling
		Ability to read and interoperate graphs with
		variable axis scales (for example, an oscilloscope)
		Ability to identify values on said graphs
		Ability to identify values on said graphs
		Ability to map a n expression to Y=MX+C in order
		to plan an experiment to determine either M or
		C
		Ability to work on logarithmic scales and use log-
		linear granhs to analyse exponential natterns
		Ability to work with a combination of logarithmic
		and linear scales on a sketch graph
		Ability to use more complex formulae to solve
		nrohlems
		Ability to use and exploit ratios to determine
		changes in a given value
		Ability to use and calculate using numbers in
		standard form
		Ability to memorise, recognize and convert
		hotwoon profix values from "pape" to "giga" in a
		colculation

		Calculation of two-dimensional vectors using
		both vector diagrams and
		Pythagoras/trigonometry
		Ability to resolve vectors into norizontal/vertical
		components
		Ability to calculate across two dimensions
		(SUVAT projectile motion)
		(
		Ability to see patterns in recorded data and use
		Ability to see patterns in recorded data and use
		salu relationships to produce general
		relationships and predict readings
		Ability to use conservation laws and formulae to
		logically explain patterns in data
		Ability to use formulae to describe relationships
		between variables and use said relationships to
		describe uses of devices for everyple
		describe uses of devices, for example
		transformers
		Ability to mathematically model for large
		populations of random data in multiple
		dimensions
		Ability to calculate using exponentials and
		Addity to calculate using exponentials and

		Ability to adapt to new units that better suit the scale of work (e.g., the use of elctronvolts instead of joules)
		Ability to convert between adapted and SI base units
		Ability to derive SI base units from SI units and use these to prove formulaic relationships
		Ability to integrate and differentiate simple expressions
		Ability to use circular modelling to apply expressions to either simple harmonic or sinusoidal motion
		Calculation of random and systematic errors from data
		Calculation of uncertainties from data Ability to use more complex scientific equipment, such as micrometers, Vernier calipers and oscilloscopes
		At this point, we are discussing real world research and applications/discoveries in advanced power generation (nuclear fusion and fission, antimatter and the morals of nuclear

		weaponry/application of physics for conflict) and
		discoveries astrophysics (such as more advances
		astrophysics measuring and new discoveries of
		the universe). Students are ideally well situated
		to apply which knowledge to any engineering-
		based career and the analytical and logic skills to
		virtually any career.